Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-*N*-[(5-Methyl-2-furyl)methylene]-3-nitroaniline

Ya-Ning Guo

Department of Chemistry, Baoji University of Arts and Sciences, Baoji, Shaanxi 721007, People's Republic of China Correspondence e-mail: ggyn1997@163.com

Received 21 February 2009; accepted 26 February 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.045; wR factor = 0.127; data-to-parameter ratio = 6.5.

The asymmetric unit of the title compound, $C_{12}H_{10}N_2O_3$, contains two crystallographically independent molecules, in which the furan and benzene rings are oriented at dihedral angles of 46.09 (3) and 39.98 (3)°. In the crystal structure, weak intermolecular C-H···N hydrogen bonds link the molecules into chains running nearly parallel to the *a* axis.

Related literature

For general background, see: Li & Zhang (2005); Antal *et al.* (1991); Basta & El-Saied (2003). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data C₁₂H₁₀N₂O₃

 $M_r = 230.22$

Z = 8

Mo $K\alpha$ radiation

 $0.42 \times 0.39 \times 0.20 \text{ mm}$

8789 measured reflections 2002 independent reflections

1331 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int}=0.051$

Orthorhombic, $Pca2_1$ a = 21.634 (2) Å b = 3.8286 (9) Å c = 26.660 (2) Å V = 2208.2 (6) Å³

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
$T_{\min} = 0.959, \ T_{\max} = 0.980$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.045 & 1 \text{ restraint} \\ wR(F^2) &= 0.127 & H\text{-atom parameters constrained} \\ S &= 1.06 & \Delta\rho_{\max} = 0.15 \text{ e } \text{ Å}^{-3} \\ 2002 \text{ reflections} & \Delta\rho_{\min} = -0.16 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C23-H23\cdots N1^{i}$	0.93	2.51	3.429 (3)	172
Symmetry code: (i) x +	$\frac{1}{2} - n + 2 \pi$			

Symmetry code: (i) $x + \frac{1}{2}, -y + 2, z$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL*.

The author gratefully acknowledges support from a research project (grant No. 05jk136) of the Education Department of Shaanxi Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2629).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Antal, M. J. Jr, Leesomboon, T., Mok, W. S. & Richards, G. N. (1991). Carbohydr. Res. 17, 71–85.

Basta, A. H. & El-Saied, H. (2003). Cellul. Chem. Technol. 37, 79-94.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Li, Z. X. & Zhang, X. L. (2005). Chin. J. Struct. Chem. 24, 1310–1313.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2009). E65, 0669 [doi:10.1107/S1600536809007107]

(E)-N-[(5-Methyl-2-furyl)methylene]-3-nitroaniline

Y.-N. Guo

Comment

Schiff base complexes are of great interests for inorganic and bioinorganic chemists. To the best of our knowledge, in the past two decades, Schiff base complexes derived from furaldehydes have been less reported (Li & Zhang, 2005). Furaldehydes are raw materials used for preparing many medicines and industrial products, and some of furfural derivatives have a strong bactericidal ability and their antibacterial activities are fairly broad (Antal *et al.*, 1991; Basta & EI-Saied, 2003). As an extension of our work on the structural characterizations of Schiff bases of furaldehyde derivatives, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen *et al.*, 1987) and angles are generally within normal ranges. Rings A (O1/C2-C5), B (C7-C12) and C (O4/C14-C17), D (C19-C24) are, of course, planar, and they are oriented at dihedral angles of A/B = 46.09 (3) and C/D = 39.98 (3) °.

In the crystal structure, weak intermolecular C-H···N hydrogen bonds (Table 1) link the molecules into chains nearly parallel to the a-axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 5-methyl-2-furaldehyde (11.0 mg, 0.1 mmol) and 3-nitrobenzenamine (13.8 mg, 0.1 mmol) were dissolved in methanol (10 ml). The mixture was stirred for 1 h at room temperature, and then filtered. After allowing the filtrate to stand in air for 7 d, yellow block-shaped crystals of the title compound were obtained. They were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl₂ (yield; 60%).

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms. Friedel pairs were merged.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted.

(E)-N-[(5-Methyl-2-furyl)methylene]-3-nitroaniline

$C_{12}H_{10}N_2O_3$	$F_{000} = 960$
$M_r = 230.22$	$D_{\rm x} = 1.385 {\rm ~Mg} {\rm m}^{-3}$
Orthorhombic, <i>Pca</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 1515 reflections
a = 21.634 (2) Å	$\theta = 2.4 - 20.5^{\circ}$
<i>b</i> = 3.8286 (9) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 26.660 (2) Å	T = 298 K
V = 2208.2 (6) Å ³	Block, yellow
Z = 8	$0.42 \times 0.39 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	2002 independent reflections
Radiation source: fine-focus sealed tube	1331 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.051$
T = 298 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Siemens, 1996)	$h = -25 \rightarrow 24$
$T_{\min} = 0.959, T_{\max} = 0.980$	$k = -4 \rightarrow 4$
8789 measured reflections	$l = -31 \rightarrow 23$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_o^2) + (0.0216P)^2 + 0.7218P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2002 reflections	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
307 parameters	$\Delta \rho_{\text{min}} = -0.15 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.06199 (19)	0.3004 (10)	0.26104 (17)	0.0472 (11)
N2	0.0529 (3)	0.1073 (14)	0.4392 (2)	0.0681 (14)
N3	0.31807 (19)	0.9617 (11)	0.36859 (16)	0.0470 (11)
N4	0.2860 (3)	1.0358 (15)	0.19047 (19)	0.0657 (14)
01	0.00925 (16)	0.2744 (9)	0.16401 (13)	0.0497 (9)
O2	0.0034 (2)	-0.0350 (15)	0.43257 (19)	0.0921 (16)
O3	0.0753 (3)	0.1515 (18)	0.48052 (16)	0.110 (2)
O4	0.27482 (18)	0.7909 (9)	0.46480 (13)	0.0520 (10)
O5	0.2380 (2)	0.8701 (14)	0.19661 (19)	0.0890 (16)
O6	0.3026 (3)	1.1466 (17)	0.14984 (17)	0.1053 (19)
C1	0.0915 (2)	0.1827 (14)	0.2234 (2)	0.0466 (13)
H1	0.1320	0.1096	0.2287	0.056*
C2	0.0677 (2)	0.1540 (14)	0.17390 (19)	0.0460 (13)
C3	0.0929 (3)	0.0267 (15)	0.1313 (2)	0.0586 (16)
Н3	0.1321	-0.0699	0.1277	0.070*
C4	0.0488 (3)	0.0683 (15)	0.0937 (2)	0.0611 (16)
H4	0.0533	0.0052	0.0602	0.073*
C5	-0.0012 (3)	0.2153 (14)	0.1144 (2)	0.0526 (15)
C6	-0.0618 (3)	0.3237 (16)	0.0943 (2)	0.0646 (17)
H6A	-0.0631	0.2783	0.0589	0.097*
H6B	-0.0677	0.5688	0.1001	0.097*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H6C	-0.0940	0.1944	0.1107	0.097*
C7	0.0929 (2)	0.3138 (12)	0.3078 (2)	0.0409 (12)
C8	0.0596 (2)	0.2124 (14)	0.3490 (2)	0.0447 (13)
H8	0.0189	0.1385	0.3459	0.054*
C9	0.0879 (3)	0.2223 (15)	0.39510 (19)	0.0494 (14)
C10	0.1472 (3)	0.3357 (16)	0.4017 (2)	0.0592 (15)
H10	0.1653	0.3391	0.4334	0.071*
C11	0.1794 (3)	0.4448 (15)	0.3600(2)	0.0609 (16)
H11	0.2196	0.5280	0.3635	0.073*
C12	0.1525 (2)	0.4314 (13)	0.3136 (2)	0.0499 (14)
H12	0.1749	0.5026	0.2856	0.060*
C13	0.3537 (3)	0.8338 (15)	0.4012 (2)	0.0511 (14)
H13	0.3951	0.8058	0.3929	0.061*
C14	0.3343 (3)	0.7292 (14)	0.4502 (2)	0.0490 (13)
C15	0.3657 (3)	0.5765 (16)	0.4878 (2)	0.0621 (16)
H15	0.4070	0.5101	0.4873	0.075*
C16	0.3243 (3)	0.5366 (16)	0.5277 (2)	0.0672 (18)
H16	0.3329	0.4364	0.5587	0.081*
C17	0.2701 (3)	0.6692 (14)	0.5130(2)	0.0569 (16)
C18	0.2091 (3)	0.7113 (18)	0.5369 (2)	0.078 (2)
H18A	0.2017	0.9543	0.5434	0.117*
H18B	0.2082	0.5841	0.5679	0.117*
H18C	0.1776	0.6229	0.5149	0.117*
C19	0.3425 (2)	1.0521 (13)	0.32122 (18)	0.0421 (12)
C20	0.3048 (2)	1.0067 (12)	0.27975 (19)	0.0422 (12)
H20	0.2651	0.9172	0.2836	0.051*
C21	0.3259 (3)	1.0933 (14)	0.23347 (19)	0.0484 (13)
C22	0.3846 (3)	1.2301 (14)	0.2259 (2)	0.0589 (16)
H22	0.3984	1.2841	0.1937	0.071*
C23	0.4218 (3)	1.2838 (15)	0.2669 (3)	0.0568 (15)
H23	0.4611	1.3780	0.2629	0.068*
C24	0.4007 (2)	1.1980 (13)	0.3141 (2)	0.0542 (14)
H24	0.4259	1.2383	0.3417	0.065*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.040 (2)	0.046 (3)	0.055 (3)	0.002 (2)	0.007 (2)	0.003 (2)
N2	0.060 (4)	0.085 (4)	0.059 (4)	0.005 (3)	0.004 (3)	0.008 (3)
N3	0.047 (3)	0.047 (3)	0.047 (3)	0.000 (2)	-0.002 (2)	-0.003 (2)
N4	0.065 (4)	0.083 (4)	0.048 (3)	0.019 (3)	0.004 (3)	-0.002 (3)
01	0.050 (2)	0.050(2)	0.049 (2)	0.0024 (17)	0.0033 (17)	-0.0044 (17)
O2	0.060 (3)	0.141 (5)	0.076 (3)	-0.015 (3)	0.015 (2)	0.016 (3)
O3	0.116 (4)	0.164 (6)	0.052 (3)	-0.029 (4)	-0.012 (3)	0.018 (3)
O4	0.059 (3)	0.053 (2)	0.044 (2)	0.0019 (18)	-0.0083 (17)	0.0021 (18)
O5	0.063 (3)	0.132 (5)	0.072 (3)	-0.004 (3)	-0.013 (2)	-0.014 (3)
O6	0.128 (5)	0.140 (5)	0.048 (3)	0.002 (4)	0.006 (3)	0.007 (3)
C1	0.033 (3)	0.050 (3)	0.057 (4)	-0.001 (2)	0.006 (3)	0.006 (3)

C2	0.044 (3)	0.048 (3)	0.047 (3)	0.003 (2)	0.006 (3)	0.001 (2)
C3	0.058 (4)	0.055 (4)	0.062 (4)	0.003 (3)	0.014 (3)	-0.002 (3)
C4	0.075 (4)	0.058 (4)	0.050 (3)	-0.007 (3)	0.014 (3)	-0.010 (3)
C5	0.063 (4)	0.048 (3)	0.047 (4)	-0.009 (3)	0.003 (3)	-0.004 (3)
C6	0.076 (5)	0.062 (4)	0.055 (4)	0.000 (3)	-0.007 (3)	-0.002 (3)
C7	0.036 (3)	0.035 (3)	0.051 (3)	0.004 (2)	-0.002 (3)	-0.003 (2)
C8	0.034 (3)	0.045 (3)	0.055 (3)	0.002 (2)	-0.001 (3)	-0.002 (3)
C9	0.049 (3)	0.052 (4)	0.046 (3)	0.002 (3)	0.002 (3)	0.002 (3)
C10	0.054 (4)	0.064 (4)	0.060 (4)	0.002 (3)	-0.016 (3)	-0.005 (3)
C11	0.040 (3)	0.061 (4)	0.082 (5)	-0.010 (3)	-0.009(3)	-0.002 (3)
C12	0.041 (3)	0.042 (3)	0.067 (4)	-0.006 (2)	0.005 (3)	0.007 (3)
C13	0.051 (4)	0.050 (3)	0.052 (4)	-0.002 (3)	-0.007 (3)	-0.007 (3)
C14	0.051 (3)	0.043 (3)	0.052 (3)	0.003 (3)	-0.007 (3)	-0.008 (3)
C15	0.066 (4)	0.053 (4)	0.067 (4)	-0.001 (3)	-0.025 (3)	-0.004 (3)
C16	0.097 (5)	0.060 (4)	0.045 (4)	-0.002 (4)	-0.020 (4)	0.002 (3)
C17	0.087 (5)	0.044 (3)	0.040 (3)	-0.009 (3)	-0.003 (3)	-0.003 (3)
C18	0.097 (5)	0.072 (5)	0.064 (4)	-0.011 (4)	0.016 (4)	0.000 (3)
C19	0.041 (3)	0.039 (3)	0.046 (3)	-0.004 (2)	0.007 (2)	-0.001 (2)
C20	0.033 (3)	0.043 (3)	0.051 (3)	0.000 (2)	0.005 (2)	-0.002 (3)
C21	0.053 (3)	0.044 (3)	0.048 (3)	0.007 (3)	0.007 (3)	0.002 (3)
C22	0.062 (4)	0.044 (3)	0.071 (4)	0.002 (3)	0.027 (4)	0.010 (3)
C23	0.039 (3)	0.049 (4)	0.083 (4)	-0.008 (2)	0.014 (3)	0.000 (3)
C24	0.046 (3)	0.044 (3)	0.073 (4)	0.000(2)	0.002 (3)	-0.010 (3)

Geometric parameters (Å, °)

N1—C1	1.273 (6)	С8—Н8	0.9300
N1—C7	1.415 (6)	C9—C10	1.366 (7)
N2—O2	1.215 (7)	C10-C11	1.376 (8)
N2—O3	1.216 (6)	C10—H10	0.9300
N2—C9	1.465 (7)	C11—C12	1.369 (8)
N3—C13	1.260 (6)	C11—H11	0.9300
N3—C19	1.412 (6)	С12—Н12	0.9300
N4—O6	1.218 (7)	C13—C14	1.429 (8)
N4—O5	1.229 (6)	С13—Н13	0.9300
N4—C21	1.452 (7)	C14—C15	1.345 (8)
O1—C5	1.359 (6)	C15—C16	1.400 (9)
O1—C2	1.371 (6)	C15—H15	0.9300
O4—C14	1.364 (7)	C16—C17	1.335 (8)
O4—C17	1.372 (6)	С16—Н16	0.9300
C1—C2	1.420 (7)	C17—C18	1.474 (9)
С1—Н1	0.9300	C18—H18A	0.9600
C2—C3	1.352 (7)	C18—H18B	0.9600
C3—C4	1.393 (9)	C18—H18C	0.9600
С3—Н3	0.9300	C19—C20	1.385 (7)
C4—C5	1.339 (8)	C19—C24	1.391 (7)
C4—H4	0.9300	C20—C21	1.357 (7)
C5—C6	1.477 (8)	С20—Н20	0.9300
С6—Н6А	0.9600	C21—C22	1.387 (8)

С6—Н6В	0.9600	C22—C23	1.375 (8)
С6—Н6С	0.9600	C22—H22	0.9300
С7—С8	1.370 (7)	C23—C24	1.377 (8)
C7—C12	1.375 (6)	С23—Н23	0.9300
C8—C9	1.372 (7)	C24—H24	0.9300
C1—N1—C7	118.1 (4)	C12—C11—H11	119.9
O2—N2—O3	123.1 (6)	C10-C11-H11	119.9
O2—N2—C9	118.3 (5)	C11—C12—C7	120.9 (5)
O3—N2—C9	118.7 (6)	С11—С12—Н12	119.6
C13—N3—C19	118.9 (5)	С7—С12—Н12	119.6
O6—N4—O5	123.2 (6)	N3—C13—C14	124.0 (5)
O6—N4—C21	118.3 (6)	N3—C13—H13	118.0
O5—N4—C21	118.4 (5)	C14—C13—H13	118.0
C5—O1—C2	106.5 (4)	C15—C14—O4	109.8 (5)
C14—O4—C17	106.2 (4)	C15—C14—C13	130.9 (6)
N1—C1—C2	125.3 (5)	O4—C14—C13	119.3 (5)
N1—C1—H1	117.4	C14—C15—C16	106.9 (6)
C2—C1—H1	117.4	C14—C15—H15	126.6
C3—C2—O1	109.4 (5)	C16—C15—H15	126.6
C3—C2—C1	131.5 (5)	C17—C16—C15	107.3 (5)
O1—C2—C1	119.2 (4)	С17—С16—Н16	126.3
C2—C3—C4	106.7 (5)	C15-C16-H16	126.3
С2—С3—Н3	126.6	C16—C17—O4	109.8 (5)
С4—С3—Н3	126.6	C16—C17—C18	134.5 (6)
C5—C4—C3	107.7 (5)	O4—C17—C18	115.7 (6)
С5—С4—Н4	126.2	C17—C18—H18A	109.5
C3—C4—H4	126.2	C17—C18—H18B	109.5
C4—C5—O1	109.7 (5)	H18A—C18—H18B	109.5
C4—C5—C6	133.2 (6)	C17—C18—H18C	109.5
O1—C5—C6	117.1 (5)	H18A—C18—H18C	109.5
С5—С6—Н6А	109.5	H18B—C18—H18C	109.5
С5—С6—Н6В	109.5	C20—C19—C24	118.3 (5)
H6A—C6—H6B	109.5	C20-C19-N3	117.6 (4)
С5—С6—Н6С	109.5	C24—C19—N3	124.0 (5)
Н6А—С6—Н6С	109.5	C21—C20—C19	119.8 (5)
H6B—C6—H6C	109.5	C21—C20—H20	120.1
C8—C7—C12	119.6 (5)	С19—С20—Н20	120.1
C8—C7—N1	116.7 (4)	C20—C21—C22	122.2 (5)
C12—C7—N1	123.7 (5)	C20-C21-N4	118.7 (5)
С7—С8—С9	118.5 (5)	C22-C21-N4	119.1 (5)
С7—С8—Н8	120.8	C23—C22—C21	118.4 (5)
С9—С8—Н8	120.8	C23—C22—H22	120.8
C10—C9—C8	122.8 (5)	C21—C22—H22	120.8
C10—C9—N2	118.5 (5)	C22—C23—C24	119.9 (5)
C8—C9—N2	118.7 (5)	С22—С23—Н23	120.1
C9—C10—C11	117.9 (5)	C24—C23—H23	120.1
С9—С10—Н10	121.0	C23—C24—C19	121.4 (5)
C11—C10—H10	121.0	C23—C24—H24	119.3
C12—C11—C10	120.2 (5)	C19—C24—H24	119.3

C7—N1—C1—C2	-179.5 (5)	C19—N3—C13—C14	-179.4 (5)
C5—O1—C2—C3	0.6 (6)	C17—O4—C14—C15	-0.3 (6)
C5—O1—C2—C1	179.8 (5)	C17—O4—C14—C13	-179.1 (5)
N1-C1-C2-C3	-177.9 (6)	N3-C13-C14-C15	176.7 (6)
N1-C1-C2-O1	3.1 (8)	N3-C13-C14-O4	-4.8 (8)
O1—C2—C3—C4	-0.1 (6)	O4-C14-C15-C16	0.6 (7)
C1—C2—C3—C4	-179.2 (6)	C13-C14-C15-C16	179.2 (5)
C2—C3—C4—C5	-0.4 (7)	C14—C15—C16—C17	-0.7 (7)
C3—C4—C5—O1	0.7 (6)	C15—C16—C17—O4	0.5 (7)
C3—C4—C5—C6	179.7 (6)	C15—C16—C17—C18	-179.2 (6)
C2—O1—C5—C4	-0.8 (6)	C14—O4—C17—C16	-0.2 (6)
C2—O1—C5—C6	-180.0 (5)	C14—O4—C17—C18	179.6 (5)
C1—N1—C7—C8	-137.9 (5)	C13—N3—C19—C20	145.3 (5)
C1—N1—C7—C12	44.1 (7)	C13—N3—C19—C24	-37.8 (7)
C12—C7—C8—C9	-1.8 (7)	C24—C19—C20—C21	2.2 (7)
N1	-179.9 (4)	N3-C19-C20-C21	179.3 (5)
C7—C8—C9—C10	1.4 (8)	C19—C20—C21—C22	-0.5 (8)
C7—C8—C9—N2	-178.8 (5)	C19—C20—C21—N4	178.6 (5)
O2—N2—C9—C10	-170.6 (6)	O6—N4—C21—C20	172.6 (6)
O3—N2—C9—C10	7.8 (9)	O5—N4—C21—C20	-9.2 (8)
O2—N2—C9—C8	9.5 (8)	O6—N4—C21—C22	-8.3 (8)
O3—N2—C9—C8	-172.1 (6)	O5—N4—C21—C22	169.9 (5)
C8—C9—C10—C11	0.2 (9)	C20-C21-C22-C23	-1.1 (8)
N2-C9-C10-C11	-179.7 (5)	N4—C21—C22—C23	179.9 (5)
C9—C10—C11—C12	-1.3 (9)	C21—C22—C23—C24	0.8 (8)
C10-C11-C12-C7	0.9 (8)	C22—C23—C24—C19	0.9 (8)
C8—C7—C12—C11	0.7 (8)	C20-C19-C24-C23	-2.4 (8)
N1-C7-C12-C11	178.6 (5)	N3—C19—C24—C23	-179.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C23—H23…N1 ⁱ	0.93	2.51	3.429 (3)	172
Symmetry codes: (i) $x+1/2$, $-y+2$, z .				

Fig. 2